Engineering substrate preference in subtilisin: structural and kinetic analysis of a specificity mutant.

نویسندگان

  • Biao Ruan
  • Viktoriya London
  • Kathryn E Fisher
  • D Travis Gallagher
  • Philip N Bryan
چکیده

Bacillus subtilisin has been a popular model protein for engineering altered substrate specificity. Although some studies have succeeded in increasing the specificity of subtilisin, they also demonstrate that high specificity is difficult to achieve solely by engineering selective substrate binding. In this paper, we analyze the structure and transient state kinetic behavior of Sbt160, a subtilisin engineered to strongly prefer substrates with phenylalanine or tyrosine at the P4 position. As in previous studies, we measure improvements in substrate affinity and overall specificity. Structural analysis of an inactive version of Sbt160 in complex with its cognate substrate reveals improved interactions at the S4 subsite with a P4 tyrosine. Comparison of transient state kinetic behavior against an optimal sequence (DFKAM) and a similar, but suboptimal, sequence (DVRAF) reveals the kinetic and thermodynamic basis for increased specificity, as well as the limitations of this approach. While highly selective substrate binding is achieved in Sbt160, several factors cause sequence specificity to fall short of that observed with natural processing subtilisins. First, for substrate sequences which are nearly optimal, the acylation reaction becomes faster than substrate dissociation. As a result, the level of discrimination among these substrates diminishes due to the coupling between substrate binding and the first chemical step (acylation). Second, although Sbt160 has 24-fold higher substrate affinity for the optimal substrate DFKAM than for DVRAF, the increased substrate binding energy is not translated into improved transition state stabilization of the acylation reaction. Finally, as interactions at subsites become stronger, the rate-determining step in peptide hydrolysis changes from acylation to product release. Thus, the release of the product becomes sluggish and leads to a low k(cat) for the reaction. This also leads to strong product inhibition of substrate turnover as the reaction progresses. The structural and kinetic analysis reveals that differences in the binding modes at subsites for substrates, transition states, and products are subtle and difficult to manipulate via straightforward protein engineering. These findings suggest several new strategies for engineering highly sequence selective enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic and structural characterization of mutations of glycine 216 in alpha-lytic protease: a new target for engineering substrate specificity.

Gly216 in the active site of the broadly specific MA190 mutant of alpha-lytic protease has been found to be remarkably tolerant of amino acid substitutions. Side-chains as large as Trp can be accommodated within the substrate-binding pocket without abolishing catalysis, and have major effects upon the substrate specificity of the enzyme. Kinetic characterization of eleven enzymatically active m...

متن کامل

Construction of novel subtilisin E with high specificity, activity and productivity through multiple amino acid substitutions.

Through three cumulative amino acid substitutions, we constructed novel mutant subtilisins E of Bacillus subtilis, all with high specificity, activity and productivity. The substitution of conserved Gly127, constituting P1 substrate-binding pocket, with Ala and Val showed a marked preference for the small P1 substrate. Leu was then substituted for Ile31 next to the catalytic Asp32 to enhance th...

متن کامل

Designing substrate specificity by protein engineering of electrostatic interactions.

Protein engineering of electrostatic interactions between charged substrates and complementary charged amino acids, at two different sites in the substrate binding cleft of the protease subtilisin BPN', increases kcat/Km toward complementary charged substrates (up to 1900 times) and decreases kcat/Km toward similarly charged substrates. From kinetic analysis of 16 mutants of subtilisin and the ...

متن کامل

A study of the specificity of barley chymotrypsin inhibitor 2 by cysteine engineering of the P1 residue.

A combination of oligonucleotide-directed mutagenesis and chemical modification was used to produce reactive site (P1) variants of chymotrypsin inhibitor II (CI2) in an attempt to create more potent inhibitors and examine inhibitory specificity. Mutagenesis to introduce a unique cysteine (CI2M59C) followed by modification to S-carboxamidocysteine with iodoacetamide produced a 7-fold more potent...

متن کامل

The Role of Highly Conserved Tryptophan in the Sixth Conserved Region at Substrate Specificity of α- amylase

Early in this study, an α-Amylase from Bacillus megaterium WHO (BMW) was isolated from hot springs of Ramsar (North of Iran), and its gene was cloned in E.coli. Based on its conserved sequence regions and substrate specificity, it was classified as intermediary group enzymes with the specificity of oligo-1,6-glucosidase and neopullulanase subfamilies. In the sixth conserved re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 47 25  شماره 

صفحات  -

تاریخ انتشار 2008